Carcinoembryonic antigen inhibits anoikis in colorectal carcinoma cells by interfering with TRAIL-R2 (DR5) signaling.

نویسندگان

  • Raed N Samara
  • Luciana M Laguinge
  • J Milburn Jessup
چکیده

Carcinoembryonic antigen (CEA) is a tumor marker that is associated with metastasis, poor response to chemotherapy of colorectal cancer (CRC), and anoikis, a form of apoptosis caused by cell detachment from matrix that is dependent on TRAIL-R2 (DR5) and caspase-8 activation in CRC. Although CEA is a homophilic binding protein that may provide survival signals through homotypical cell aggregation, we now report that CEA binds TRAIL-R2 (DR5) directly in two-hybrid assays to decrease anoikis through the extrinsic pathway. Deletion of the PELPK sequence (delPELPK) of CEA (delPELPK CEA) restores sensitivity to anoikis while it maintains its cell aggregation function. Wild-type (WT) CEA also increases experimental hepatic metastasis, whereas the delPELPK CEA does not. Thus, membrane CEA interacts with DR5 to inhibit anoikis and increase metastatic potential in CRC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DR5 receptor mediates anoikis in human colorectal carcinoma cell lines.

As human colorectal cancer (CRC) cells metastasize to distant sites, they are susceptible to detachment-induced cell death or anoikis - a form of apoptosis that occurs when anchorage-dependent CRC cells go into suspension. Our goal was to identify whether tumor necrosis factor receptor apoptosis-inducing ligand (TRAIL) receptors mediate anoikis in human CRC cells. First, we assessed whether cas...

متن کامل

Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells.

Death receptor 5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L). In this study, we showed that tunicamycin, a naturally occurring antibiotic, is a potent enhancer of TRAIL-induced apoptosis through up-regulation of DR5 expression. Tunicamycin significantly sensitized PC-3, androgen-independent human prostate ca...

متن کامل

Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis through CHOP-independent DR5 upregulation.

Death receptor DR5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In this study, we showed that curcumin, a plant product containing the phenolic phytochemical, is a potent enhancer of TRAIL-induced apoptosis through upregulation of DR5 expression. Both treatment with DR5/Fc chimeric protein and silencing of DR5 exp...

متن کامل

Fenretinide up-regulates DR5/TRAIL-R2 expression via the induction of the transcription factor CHOP and combined treatment with fenretinide and TRAIL induces synergistic apoptosis

Fenretinide (N-[4-Hydroxyphenyl]retinamide; 4HPR) is a semisynthetic retinoid that induces apoptosis in a variety of malignancies. Fenretinide has been examined in clinical trials as a cancer chemopreventive and chemotherapeutic agent. Oxidative stress induced by fenretinide has been shown to mediate apoptosis through a mitochondrial pathway by the induction of a transcription factor CCAAT/ enh...

متن کامل

Carcinoembryonic Antigen Expression and Resistance to Radiation-and 5-Fluorouracil-Induced Apoptosis and Autophagy

Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5- azacytidine (5-AZA) to induce CEA expression in HT29...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 10  شماره 

صفحات  -

تاریخ انتشار 2007